
Confidential Verifiable Transactions - 3.   Anonymization    PP = (p, g).

B1:

m1=2000
n1=gm1 mod p

c1a=Enc(a,i1,n1)
c1β=Enc(β,j1,n1)

B2:

m2=3000
n2=gm2 mod p

c2a=Enc(a,i2,n2)
c2β=Enc(β,j2,n2)

m3=1000

n3=gm3 mod p
c3β=Enc(β,i3,n3)

m4=4000

n4=gm4 mod p
c4β=Enc(β,i4,n4)

E:
PrKE = y
PuKE = b

c3b=Enc(b,i5,n3)

    AA
PrKE = z
PuKA = β

Net

c1a

n1=Dec(x,c1a)
Comp(n1)=m1

   PrKA = x 
PuKA = a =

= gx mod p

c2a

n2=Dec(x,c2a)
Comp(n2)=m2

c1β

c2β

c4βc3β

>> z = int64(randi(p-1))
z = 256639678
>> beta=mod_exp(g,z,p)
beta = 221828624

c1a c2a c3β c4β

A: UTxO

c1a ∙ c2a = c12a c3β ∙ c4β = c34β

Let us compare the number of most resources consuming operations required to realize the private and verifiable 
transactions using ElGamal Cryptosystem (EGC) and Elliptic Curve Cryptosystem (ECC) schemes for only 
1 sender Bob1 and 1 receiver-sender Alice. 
In ElGamal Cryptosystem such operation is Discrete Exponent Function (DEF), e.g. of the form a = gx mod p 

or exponentiation.
In Elliptic Curve Cryptosystem (ECC) such operation is Elliptic Curve point G multiplying by integer z, e.g. A = z*G 
which we name as EC exponentiation: encryption is replaced by Pedersen Commitment. 

We assume that these operations are almost equivalent.

Fig. 1. Private and verifiable transactions using ElGamal Cryptosystem.

c12a = Enc(a,i1+i2,n1∙n2)
         = Enc(a,i1+i2,n12)
n12 = n1.n2 mod p
        = g(m1+m2) mod (p-1) mod p 

c34β = Enc(β,i3+i4,n3∙n4)
          = Enc(β,i3+i4,n34)
n34 = n3.n4 mod p
        = g(m3+m4) mod (p-1) mod p

Since n1=gm1 mod p and n2=gm2 mod p, and n3=gm3 mod p and n4=gm4 mod p then 
if m1+m2 = m3+m4 then n12 mod p = n1∙n2 mod p = n3∙n4 mod p =  n34 mod p.

ElGamal Encryption: ElGamal Decryption:
D-x mod p;

m=ED-x mod p;
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EGC operations.1.
1.1. Bob1 performs 2 encryptions: 1 for Alice and 1 for AA. Hence the number of exponentiations is 4.
        We do not take into account the exponentiation for computing n1 since the number m1 is considerable small,
        and Comp(n1)=m1 since Alice knows the approximate sum of m1.
1.2. Alice performs 1 decryption for income from Bob1 - 1 exponentiations and 2 encryptions for expenses: 1 for 
Ema and 1 for AA requiring 4 exponentiations. Hence Alice performs 5 exponentiations.
1.3. To proof the equivalence of ciphertexts c12a and c34β it is required to perform 4 exponentiations.

In total it is required to perform 9 exponentiations for Alice.

Alice computations to prove that transaction is honest, i.e. that 2 ciphertexts are obtained by encryption the 
same sum of incomes and expenses by different public keys a and β are equivalent.

This requires to perform 4 exponentiations.  

Anonymity in Blockchain

Let Alice opened her Bitcoin account with Bitcoin Address by generating her private key PrK=x and public key PuK=a.
We assume that PuK=a are linked to Alice Aaddress in Bitcoin.

In Bitcoin and other Blockchains the Address is computed as a function of user's public key:
AddrA = F(PuK) and consist of several dozens of decimal numbers.

In 2024.11 Donal Trump declared America to be a Bitcoin country.
Possibly inspired by Elon Musk.
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Transaction (Tx) information in simplified form consist of the following information:
The address of Tx creator.1.
The sums of Incomes and addresses of senders.2.
The sums of Expenses and addresses of receivers.3.

Cryptocurrency transaction

No. Pajamos-Incomes Išlaidos-Expenses Likutis-Balance

In1. Client1: 1000 Sat      1000 Sat

In2. Client2: 2000 Sat Out1. Firm 5: 1700 Sat      1300 Sat

In3. Client3: 3000 Sat Out2.t Firm 6: 2300 Sa      2000 Sat

In4. Client4: 4000 Sat Out3. Firm 7:      6000 Sat

Total           10 000 Sat                        4000 Sat      6000 Sat

Transaction - Tx

UTxO

AddrA

TxA

Schnorr Signature

In the case of Schnorr cryptosystem our simulation is performed with Public Parameters: 
PP = (p, g);   p=268435019; g=2;                                                                    p=int64(268435019)

By having PP private key PrK and public key PuK are generated:
PrK = x <-- randi(p-1)
PuK = a = g X mod p.

Unspent Transaction Output - UTxO paradigm

Alice has a certificate CertA for her PuKA = a = gx mod p. 
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But Alice do not want that all her incomes belonging to her Address were known and therefore and she prefers to be 
anonymous to the Net.
Then she creates a set of  Addresses by generating a set of private keys {PrKi = xi} and a set of public keys {PuKi = ai},
where i=1, 2, …, N. 

But! There are the situations when Alice must prove some subjects that she possesses some amount of money 
distributed among a lot of her accounts and transactions with different addresses.
For example, she could pretend to tax concessions - (mokesčiu lengvatos) (according to the law) and she must prove to 
certain Investment Company that she possesses sufficient amount of money.
In this case she must prove that she controls some accounts with this sufficient amount of money for investment.
In this case Alice must prove that her transactions are authentic (i.e. are created by her) by proving that PuK=a belongs 
to her, e.g. using Certificate issued by Certificate Authority for PuK=a, but at the same time she remains anonymous for 
other part of the Net.

PrK1 = x1

PuK1 = a1 =
= gx1 mod p

   Addr1          STO   
   Investment
  Company (IC)
Requires to invest
        at least
          5000

m1 = 2000

m2 = 3000 m4 = 4000

m3 = 1000

m6 = 1000

m5 = 4000
Sign(x1, m5) =

=  = (r1, s1)

m7 = 2000

m8 = 3000
m9 = 3000
Sign(x2, m9) =

=  = (r2, s2)

PrKA = x

ϭ

PuKA = a

}r
s

m
m < p

u <-- randi(p-1).
r = gu mod p.  

h = H(M||r).                           >> con=concat(M,r)
                                                    >> h=hd28(con)
s = u+xh mod (p-1).   (*)      >> s=mod(u+x*h,p-1)

Alice’s signature on h is  = (r, s).

Notice that it is infeasible to find x from (*), when
s and h are given, since there is 1 equation (*) and 2 unknowns u and x.

Signature is valid if:     gs mod p = rah mod p.   (Eq.1)
                                          V1           V2         

PrK = x

PuK = a =
= gx mod p
CertA on a
   AddrA

PrK2 = x2

PuK2 = a2 =
= gx2 mod p

   Addr2

PrK2 = x2

PuK2 = a2 =
= gx2 mod p

   Addr2

Tx1

Tx2

Tx3

Tx4

In Monero blockchain for anonymization Alice is using Ring Signature, instead procedure presented above.
It is interresting to compare the realization effectivity of procedure presented above and procedure based on
Ring Signature.

Compare realization effectivity of DEF Schnorr multisignature with ECC ring signature computing the number of 

Discrete Exponent Function Operations - DEFO:  a = gu mod p
Elliptic Curve Cryptography Operations - ECCO: EC point multiplication by integer  z*G = P.
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gr = gxh + u = gxh ∙ gu = (gx)h ∙ gu = ah ∙ t1 mod p; 

        Schnorr-Multi-Signature
Anonymization in BlockChain

Elliptic Curve Cryptography Operations - ECCO: EC point multiplication by integer  z*G = P.

Compare with Pedersen Commitment.

Anonymous Group of Signers (GoS) must sign on different transactions with different private keys.
In this case the group consist of 2 anonymous addresses Addr1 and Addr2 belonging to Alice.
Let the GoS is: {S1; S2}.

All members of GoS have their private and public keys:
             S1;                                      S2;                                                                             
PrK1=x1, PuK1=a1;            PrK2=x2, PuK2=a2;                          

u1 <-- randi(p-1);                u2 <-- randi(p-1);
r1=gu1 mod p;                     r2=gu2 mod p;
h1=H(Tx3||r1);                    h2=H(Tx4||r2);
s1=u1 + x1h1 mod (p-1);       s2=u2 + x2h2 mod (p-1);

 = (r1, s1).                          = (r2, s2).  

How to join signatures  = (r1, s1) and  = (r2, s2) to the one signature P = (rP, sP).
Schnorr multisignature solves this problem.
Individual Schnorr signatures are multiplied by the special multiplication operation.                                              

 =  * = (r1, s1)*(r2, s2) = (R12, S12).

R12 = r1*r2 mod p = gu1 * gu2 mod p = gu1+u2 mod(p-1) mod p.
S12 = s1+s2 mod (p-1) = [(s1=u1 + x1h1) + (s2=u2 + x2h2)] mod (p-1) = u1 + x1h1 + u2 + x2h2 mod (p-1).
  
GoS signature verification:

  gS12 mod p = R12 * (a1)h1 * (a2)h2 mod p.   (Eq.2)
        V1                                  V2          
Compare it with a single Schnorr signature verification in (Eq. 1) 
   gs mod p = rah mod p.   (Eq.1)
         V1         V2  

           
Correctness:
gS12 mod p = g (s1 + s2) mod(p-1) mod p = g s1 mod(p-1) * g s2  mod(p-1) mod p =  g (u1 + x1*h1) mod(p-1) * g (u2 + x2*h2) mod(p-1)

mod p =

            = r1 * (a1)h1 * r2 * (a2)h2 mod p = 
                  = r1 * r2 * (a1)h1 * (a2)h2 mod p =
                  = R12 *a1

h1 * a2
h2 mod p.

Till this place
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The correctness of (30), (31) is proved by the following identities:

gr = gxh + u = gxh ∙ gu = (gx)h ∙ gu = ah ∙ t1;                    
            (33)

gs = glh + v = glh ∙ gv =(gl)h ∙ gv = (δβ,E)h ∙ t2.                    
            (34)

The correctness of (32) is proved by considering every multiplier separately:

(εβ,E)h = (E ∙ βl)h = Eh ∙ βlh;                             (35)

(εa,I)–h = (I ∙ ak)–h = I–h ∙ a–kh;                            (36)

(δa,I)r = (gk)r = (gkxh + ku) = (gx)hk ∙ (gk)u = ahk ∙ (gk)u = ahk ∙ (δa,I)u;    (37)    

gr = gxh + u = gxh ∙ gu = (gx)h ∙ gu = ah ∙ t1 mod p; 

gs = gi34*h + v = gi34*h ∙ gv =(gi34)h ∙ gv = (D34β)h ∙ t2 mod p; 

(E34β)h = (n34 ∙ βi34)h = (n34)h ∙ (D34β)h mod p. 

(E12a)–h = (n12 ∙ ai12)–h = (n12)–h ∙ a–(i12*h) mod p; 

(D12a)r = (gi12)r = (gi12*x*h + i12*u) = (gx)i12*h ∙ (gi12)u = ah*i12 ∙ (gi12)u = ai12*h ∙ (D12a)u mod p; 

β-s = β–i34*h – v = β–i34*h ∙ β-v = (D34β)-h ∙ β-v mod p;

               (E34β)h         ∙         (E12a)–h          ∙        (D12a)r          ∙          β-s         mod p ===

=== (n34)h ∙ (D34β)h   ∙   (n12)–h ∙ a–(i12*h)  ∙   ai12*h ∙ (D12a)u   ∙   (D34β)-h ∙ β-v   mod p ===

If balance equation is valid, then n34 =  n12 = n mod p then (n34)h =  (n12)–h = n–h mod p  and

(n34)h ∙  (n12)–h = n ∙ n–h = 1 mod p.

=== (n34)h ∙ (n12)–h ∙ (D12a)u ∙ β-v mod p  ===

===            1            ∙ (D12a)u ∙ β-v   ===  (D12a)u ∙ β-v  = t3.
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(δa,I)r = (gk)r = (gkxh + ku) = (gx)hk ∙ (gk)u = ahk ∙ (gk)u = ahk ∙ (δa,I)u;    (37)    

           β-s = β–lh – v = β–lh ∙ β-v.         (38)
            
           

Notice that k is not known to Alice and is included in (δa,I). If the transaction is honest, 

then the transaction balance (1) is satisfied and I=E since. Then Eh ∙ I –h = 1 mod p, 
and putting it all together, we obtain:

        Eh ∙ βlh ∙ I-h ∙ a-kh ∙ ahk ∙ (δa,I)u ∙ β-lh ∙ β-v = (δa,I)u ∙ β-v = t3.       
            (39)

This is the proof to the Net that the balance equation (1) is valid.
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